Resistance to friend virus-induced erythroleukemia in W/W(v) mice is caused by a spleen-specific defect which results in a severe reduction in target cells and a lack of Sf-Stk expression.
نویسندگان
چکیده
The characteristic progression and specificity of Friend virus for the erythroid lineage have allowed for the identification of a number of host-encoded loci that are required for disease progression. Several of these loci, including the Friend virus susceptibility gene 2 (Fv2), dominant white spotting gene (W), and Steel gene (Sl), regulate the initial polyclonal expansion of infected erythroid progenitor cells. W and Sl encode the Kit receptor tyrosine kinase and its ligand, stem cell factor, respectively. W mutant mice are severely anemic, and earlier work suggested that this defect in erythroid differentiation is the cause for the resistance to Friend virus-induced erythroleukemia. Here we show that in bone marrow, W/W(v) mice have near normal numbers of target cells and the initial infection of bone marrow occurs normally in vivo. In contrast, spleen cells from W/W(v) mice infected both in vitro and in vivo with Friend virus failed to give rise to erythropoietin-independent colonies at any time following Friend virus infection, suggesting that mutation of the Kit receptor specifically affects target cells in the spleen, rendering the mutant mice resistant to the development of Friend virus-induced erythroleukemia. In addition, we show that the Kit+ pathogenic targets of Friend virus in the spleen are distinct from the pathogenic targets in bone marrow and this population of spleen target cells is markedly decreased in W/W(v) mice and these cells fail to express Sf-Stk. These results also underscore the unique nature of the spleen microenvironment in its role in supporting the progression of acute leukemia in Friend virus-infected mice.
منابع مشابه
Role of phosphatidylinositol 3-kinase in friend spleen focus-forming virus-induced erythroid disease.
Infection of erythroid cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator, erythropoietin (Epo), because of interaction of the viral envelope protein with the erythropoietin receptor and a short form of...
متن کاملFriend spleen focus-forming virus transforms rodent fibroblasts in cooperation with a short form of the receptor tyrosine kinase Stk.
Friend spleen focus-forming virus (SFFV) causes rapid erythroleukemia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator erythropoietin (Epo) because of constitutive activation of Epo signal transduction pathways. Although SFFV infects many cell types, deregulation of cell growth occurs o...
متن کاملThe tyrosine kinase sf-Stk and its downstream signals are required for maintenance of friend spleen focus-forming virus-induced fibroblast transformation.
Infection of erythroid progenitor cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia and eventually to erythroleukemia in susceptible strains of mice. The viral envelope protein, SFFV gp55, forms a complex with the erythropoietin receptor (EpoR) and a short form of the receptor tyrosine kinase Stk (sf-Stk), activating both and inducing Epo-independent prolife...
متن کاملFriend Spleen Focus-Forming Virus Activates the Tyrosine Kinase sf-Stk and the Transcription Factor PU.1 to Cause a Multi-Stage Erythroleukemia in Mice
HEMATOLOGICAL MALIGNANCIES IN HUMANS TYPICALLY INVOLVE TWO TYPES OF GENETIC CHANGES: those that promote hematopoietic cell proliferation and survival (often the result of activation of tyrosine kinases) and those that impair hematopoietic cell differentiation (often the result of changes in transcription factors). The multi-stage erythroleukemia induced in mice by Friend spleen focus-forming vi...
متن کاملTHE INTERACTION OF RADIATION AND INTERCALATING AGENTS IN NORMAL BONE MARROW CELLS AS EVALUATED BY SPLEEN COLONY ASSAY TECHNIQUE: THE EFFECTS OF BLEOMYCIN SULFATE AND ACT INOMYCIND.
The relationship between the way in which normal hemopoietic stem cells respond to irradiation alone or in the presence of bleomycin sulfate (BLM-S) and actinomycin 0 (ACT-D) was investigated. Single doses of BLM-S at 0.3 mg/kg and ACT-O at 0.10 mg/kg body weight were injected intravenously 1-6 hours prior to whole body irradiation and treatment was repeated twice more with time intervals....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 23 شماره
صفحات -
تاریخ انتشار 2005